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Why 1s this interesting?

Textbooks frequently describe individual electrons and their

properties
e Sub-atomic particle
* Fundamental charge of -1.6 x 10-1° C
e Wavelike properties
 Particle in a box

Very abstract ideas with references to
complicated experiments

Millikan oil drop experiment

Double slit experiment
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Why 1s this interesting?

Electric circuits taught without paying much attention to
the electron

e Quantities: Current, Voltage etc.
* Principles: Kirchoff’s laws, Ohm’s law etc.

—

Ohm’s Law V=1R
R=1kQ
i V=1V
2> 1 mA
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Why 1s this interesting?
Single electron devices merge these two i1deas

Electron and its
fundamental
properties

Practical, circuit
applications

Single electron
effects and
devices
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Single electron effects

Q: If we know electric charge i1s quantized, why don’t we see any evidence
of 1t in all our everyday applications of electric charge?

1) Usual measurements of these quantities involve extremely large
numbers of electrons so effects of individual electrons are not
observable.

Example: 1 A~ 6.2 x 10!® electrons/second

2) Charge flow 1n conductors 1s continuous, electrons are not localized.

Example: Capacitor can charge with an arbitrarily small amount of
charge
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Single electron effects

Tunneling provides a way to i1solate individual electrons

Tunnel Junction: Thin oxide/insulator between two conductors
e Classically = no charge allowed to pass
e Quantum mechanics =2 finite probability electron will tunnel

000
I-eV

A tunnel barrier splits the sea of electrons into two.
Electrons are on a definite side
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Single electron effects

Coulomb repulsion

An electron will tunnel 1f it 1s going to a lower energy
e Dropping a voltage V' lowers energy by eV
e Coulomb repulsion between electrons increases energy

000
I-eV
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Single electron effects

* Quantitatively, we look at the energy required to add an electron to the
small island, the chemical potential u(N) = Eyy — Ey_4

e £y can be determined by modelling the tunnel junctions as leaky
capacitors and creating a circuit model

p(N +1) V
000 Il —
(V) I
-eV | CL.R, | CrRi
u(N — 1) B
N electrons on 1sland
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Single electron effects

Coulomb blockade
o If u(N) — u(N — 1) > eV (very small islands)

u(N)

I 000 I —!
-eV CL,R:TCR;RR

u(N —1)

N electrons on 1sland

/‘,\t\ California State University
ﬂHE

SAN MARCOS



Single electron transistors

* We need control, so we add a gate
e Gate changes electrostatic potential on island which

changes uy =
— V;
k) CG—:|:_
000 !
e

- Il —l

-eV | CL.R, | CrRi

u(N —1) c
N electrons on 1sland
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Single electron transistors

Sweeping V, we can move in and out of Coulomb
Blockade
0.15}
(eXeXe)
= eV L
< o1 N N+1 || N+2
=, One more >
[ 1 /
005 | electron on
1sland!
I J L |
P06 198 2 202 204
Vg (V)
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Single electron transistors

Sweeping V, we can move in and out of Coulomb

Blockade
0.15 Eqqa = Uy — Un-1
p Eadd
= <>
f__i 0.1/
O
_D
0.05 |
Ju g JU

P96 198 2 202 204

vy, (V)

Eqaa

T (XeXe)
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Single electron transistors

Sweeping V,. . we can change the “bias window”
where current 1s allowed to flow, and change direction

of current.
- Coulomb diamonds
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Single electron transistors

Sweeping V,. . we can change the “bias window”
where current 1s allowed to flow, and change direction

J

J\

of current.
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Double quantum dots

e We can add another tunnel junction and make two 1slands

e Current 1s blocked when any single dot
1s in Coulomb blockade

e u; and ur now depend on how many covaam| e
electrons are on both dots
_ (N + 1,M) U,(N,M + 1)
1 1 (N, M I——
— Ve — V,, (N, M) kel
—Ca —Co,
- ®
Ry Ry C; Ry € L
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Double quantum dots

Charge stability diagram = honeycomb

N,M +2
(N + 2, M) Hy( )
N, M+ 1
uy(N + 1, M) Ha( )
w (N, M) :
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Double quantum dots

GEZAL] B PP
w(N+1,M) 1y (N, M + 1)
200;
. (N, M)
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Double quantum dots

GEZAL] B PP
w(N+1,M) 1y (N, M + 1)
200;
. (N, M)
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Double quantum dots

Current allowed if u; = u; (N +1,M) = u,(N,M + 1) = up
(N,M) = (N+1,M) = (N,M+1) > (N,M)

or uy <uy(N+1,M) < u,(N,M +1) < up
(N.M) € (N+1,M) & (N,M+1) €& (N,M)

NI’
—/

e T ey w,(N,M +1)

(N, M) 1, (N, M)
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Bias triangles

(A )=lelv ~ “
1,1)=0",
(0,1 ) (1,1} (1 ,1 )
N 5V
L (=0
N BODD~ 5 \ U
>0 » I
Tk _‘ NG 1.0 1(0,1) Uy
B \ wioleol | 0 T
(0,0) - (1,0)
£ (1,0)=-leV \/H(10)=0
T Larger bias = Larger triangles

Van der Wiel et al. Rev. Mod. Phys. 75, 1 (2003)
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Quantum effects

e Up to now, only classical effects considered.

* Energy should also have a quantum term

EN — EElectrostatic + Equantum

e This means x(N) will also have a quantum term =
u(N) = Echarging + AEquantum —

e Transport measurements become very
enlightening
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Quantum effects

* Spacing between current peaks can

show shell filling

e

20 [

Ec (meV)

10

N=4<5
ond Orbit

N=12-13 |
3 Orbit

8 10 12 14

C.H. Yang et al. Nat. Comm 4, 2068 (2013)
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Quantum effects

e Spacing between current peaks can
show shell filling

» Resonances at larger S-D bias also
reveal level spacing
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Quantum effects

e Spacing between current peaks can
show shell filling

» Resonances at larger S-D bias also
reveal level spacing

* Magnetospectroscopy

Hanson et al., Rev. Mod. Phys. 79, 1217 (2007)
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Quantum effects

* Spacing between current peaks can
show shell filling

» Resonances at larger S-D bias also
reveal level spacing

* Magnetospectroscopy
e Current blockade
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Our devices

e Functionally just multi-gate MOSFETSs (metal on semiconductor field
effect transistors)

Source (S Gata (G Drain (D)

iLE

p-type substrate

7
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Our devices

e Functionally just multi-gate MOSFETs (metal on semiconductor field

effect transistors)

Gate (G)
Source (S) g Drain (D

A

10° ¢

1- I
o

10

V=tomy
T T 3

Voltage on Gate determines if silicon beneath 1t conducts
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Our devices

Fabricate a nanowire of silicon
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Our devices

Silicon (Nanowire)
EC
------------------------------------------------ E f TitAngle= 0.0° WD=4.9mm Signal B=SE2 Time 165453 P Smimem
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Our devices

— LGe LGD
Silicon (Nanowire)

kY
TitAngle= 00° WD=49mm Signal B = SE2 Time :16:54:53 1 ol
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Our devices

— LGe LGD
Silicon (Nanowire)
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Recent results

Charge stability diagram
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Recent results

Bias triangle data
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Pauli-spin blockade

Quantum mechanics

 Pauli-spin blockade results from the spin states of the electrons on the
double quantum dots.

 Spin conserved in tunneling

e Certain transitions are forbidden
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Pauli-spin blockade

e Consider the bias triangle where current flows through the
(0,1) (1,1) «(0,2) «(0,1) charge states

e Two electron spin states Sy=( LN =|11)/2
* 4 possible states Ly)=|1.T)
_)y=14L1)

* |S) is lower in energy than the |T,.) states due to the exchange energy J

* J scales with the wave function overlap between the two electrons
(how close they are)

e Therefore = J(0,2) > J(1,1)
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Pauli-spin blockade

 Consider the triple point where current flows by repeating the
(0,1)->(0,2)=>(1,1)=>(0,1) transitions

#7(0,2)
(a) Orm—mm-8 Isp(pA)
F ol 'P) p & [15(0,2) HD
21241 .jt;-"- ----- [ 1y(1,1)
ey ”:- I" ------- = _eVbzas
> e 5 N I R B B B . 20
< | |7 el
SR R
2.1041 |1 4 g%’
v ;~‘3' B=0T
@ Vgp=t+2.5mV
2.008 2.024
V2 (V) (0,2) = (1,1) direction results in a standard bias triangle
N. S. Lai et al. Sci. Rep. 1, 110 (2011) [UNSW]
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Pauli-spin blockade

 Consider the reverse direction where current flows through the
(0,1)->(1,1)->(0,2)=>(0,1) transitions

(b)

O 8 Isp (PA)

2.140

Ver (V)

2.120-

VSD:—Z.S mV
B=0T

2.016 2.032
Vey (V)

N.S. Lai et al. Sci. Rep. 1, 110 (2011) [UNSW]
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Pauli-spin blockade

e Useful for spin physics
e Quantum information

. Initialization
(b) O w8 Isp(pA)
2140, Vsp=—2.5mV .
B=0T fdd  11,(02)
i :us(lll)
> | #:(0,2)
N
2120{ @---..
2.016 2.032
Ve (V)

N.S. Lai et al. Sci. Rep. 1, 110 (2011) [UNSW]
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Recent results

 Pauli-spin blockade has certain expected features

1. Systematic magnetic field dependence due to Zeeman splitting and AJ
ii. Odd-even filling effect = only observe every other set of bias triangles
111. Should change polarity every other set of bias triangles

0.7

* What we observe 0.6
1. No systematic dependence on B
1. Asymmetry over consecutive triangles
111. Same polarity of all asymmetries
1v. Dependence on electron occupation

_\//”/N,” (meV)

Not Pauli-spin Blockade!

RES

I 2 3 4 3
Effective Source dot occupation
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Recent results

e What then?
 Natural to look at a different quantum number - “Valley” degree of
freedom ;

 Possible that valley states are leading to
blockade in similar way to the spin states of
Pauli-spin blockade?

energy [eV]
(=]

L 1L GateDraink ok O
wave vector k

/'\('\! California State University
IEE-! K"

SAN MARCOS



Model

 Electrons in one of two valley states.
e Band of states of each valley type
 Ground state of each band split by A,

e Significantly different electron fillings

- Valley type 1
- Valley type 2
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Model

The asymmetric filling this leads to
blockade and qualitative agreement with
our observations

B dependence = not systematic (complicated)
Sequential transitions with blockade

Same polarity of asymmetry

Dependence on electron occupation

- Valley type 1

- Valley type 2
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Summary

Experiment Pauli spin blockade Valley blockade model
Magnetic field Complicated, non Monotonic Complicated
dependence monotonic
Observed at Multiple consecutive  Alternating transitions Multiple consecutive
transitions transitions

Polarity of asymmetry  Single polarity across  Alternating transitions  Single polarity across

multiple transitions multiple transitions
Dependence on Decreasing size No dependence Decreasing size
electron occupation asymmetry with asymmetry with
electron occupation electron occupation
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Future work

1. Fabricate devices with increased functionality

e Charge sensing
 Independent plunger gates — True N & M

e Few electron limit

2. Finer B and E field spectroscopy

3. Examine surface properties (roughness etc.)
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